Disease-Causing Allele-Specific Silencing by RNA Interference
نویسندگان
چکیده
منابع مشابه
Disease-Causing Allele-Specific Silencing by RNA Interference
Small double-stranded RNAs (dsRNAs) of approximately 21-nucleotides in size, referred to as small interfering RNA (siRNA) duplexes, can induce sequence-specific posttranscriptional gene silencing, or RNA interference (RNAi). Since chemically synthesized siRNA duplexes were found to induce RNAi in mammalian cells, RNAi has become a powerful reverse genetic tool for suppressing the expression of ...
متن کاملSpecific Silencing of L392V PSEN1 Mutant Allele by RNA Interference
RNA interference (RNAi) technology provides a powerful molecular tool to reduce an expression of selected genes in eukaryotic cells. Short interfering RNAs (siRNAs) are the effector molecules that trigger RNAi. Here, we describe siRNAs that discriminate between the wild type and mutant (1174 C→G) alleles of human Presenilin1 gene (PSEN1). This mutation, resulting in L392V PSEN1 variant, contrib...
متن کاملBcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia
Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...
متن کاملAssessment of allele-specific gene silencing by RNA interference with mutant and wild-type reporter alleles
Allele-specific gene silencing by RNA interference (RNAi) is therapeutically useful for specifically suppressing the expression of alleles associated with disease. To realize such allele-specific RNAi (ASPRNAi), the design and assessment of small interfering RNA (siRNA) duplexes conferring ASP-RNAi is vital, but is also difficult. Here, we show ASP-RNAi against the Swedish- and London-type amyl...
متن کاملAllele-specific silencing of a pathogenic mutant acetylcholine receptor subunit by RNA interference.
Slow channel congenital myasthenic syndrome (SCCMS) is a disorder of the neuromuscular synapse caused by dominantly inherited missense mutations in genes that encode the muscle acetylcholine receptor (AChR) subunits. Here we investigate the potential of post-transcriptional gene silencing using RNA interference (RNAi) for the selective down-regulation of pathogenic mutant AChR. By transfection ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pharmaceuticals
سال: 2013
ISSN: 1424-8247
DOI: 10.3390/ph6040522